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Abstract 

We add probabilistic phase labels to the multiple-event joint probability function of 

Myers et al., 2007 that formerly included event locations, travel-time corrections, and 

arrival-time measurement precision. Prior information on any of the multiple-event 

parameters may be used. The phase-label model includes a null label that captures phases 

not belonging to the collection of phases under consideration. Using the Markov-Chain 

Monte Carlo method, samples are drawn from the multiple-event joint probability 

function to infer the posteriori distribution that is consistent with priors and the arrival-

time data set. Using this approach phase-label error can be accessed and phase-label error 

is propagated to all other multiple-event parameters. We test the method using a ground-

truth data set of nuclear explosions at the Nevada Test Site.  We find that posteriori phase 

labels agree with the meticulously analyzed data set in more than 97% of instances and 

the results are robust even when the input phase-label information is discarded. Only 

when a large percentage of the arrival-time data are corrupted does prior phase label 

information improve resolution of multiple-event parameters. Simultaneous modeling of 

the entire multiple-event system results in accurate posteriori probability regions for each 

multiple-event parameter. 

 

Introduction 

 

Seismic analysis error is typically bundled into measurement precision or “pick” error 

(e.g. Billings et al. 1994). Numerous studies (e.g. Jefferies, 1932; Buland, 1976; Grand, 



1990) find that travel-time residual distributions exhibit “heavy tails” with more outliers 

than expected by a Gaussian measurement error processes.  Although it is convenient to 

bundle all analyst error into arrival-time measurement precision, this practice has resulted 

in a pervasive disagreement between analyst-assigned error and subsequent assessment of 

“pick” error, which may include more than arrival-time measurement error. 

 

The over simplification of bundling analysis error into “pick” error is exemplified by the 

implicit acceptance of the analyst-assigned phase label (P, Pn, S, Sn etc.). A precise 

arrival-time or amplitude measurement may have large error if the phase is mislabeled or 

if a typographical error corrupts the analyst-assigned label. As such, correct phase 

identification is a critical component of seismic analysis that is often taken for granted, 

yet even an experienced analyst can be challenged to identify phases for a low-magnitude 

regional records. Data culling is the common tactic for dealing with phase label error.  

However, phase-label errors can be difficult to identify even using involved procedures. 

As a result, phase labeling error is a leading cause of erroneous data even after 

application of quality control procedures.  

 

The differences between predicted travel times for the phases used in seismic analysis are 

typically far larger then the arrival-time measurement error. Therefore, arrival-time itself 

is a powerful indicator of phase name if location and travel-time prediction are 

sufficiently accurate. This fact can be exploited to identify phase names by simply 

comparing observed arrival times with the predicted arrival times for all phases under 

consideration. Recognizing the uncertainty in travel-time predictions, Engdahl et al. 



(1998) reevaluated phase labels published in the International Seismic Center (ISC) 

bulletin by comparing observed arrival times to travel-time probability density functions 

for a number of phases.   Using this approach, the probability of membership in a given 

phase distribution was calculated. Engdahl et al. (1998) then used the probability 

calculated for each potential phase name to randomly select a phase label.  The 

reassigned phase labels were then used to relocate the ISC bulletin using a single-event 

locator. Engdahl et al. (1998) reported measurable improvement in event location, 

particularly depth estimates.  

 

Several factors can confound the use of travel-time to aid in phase identification. 

Commonly, the same phase labels we wish to assess are the ones used to determine a 

preliminary event location.  Because event location minimizes the difference between 

observed and prediction arrival-times, the location itself can absorb (be corrupted by) an 

error in the phase label, resulting in a phase label and arrival-time that are in agreement 

with predictions. Another confounding issue arises in instances where two phases arrive 

close in time, such as the cross-over in P-wave travel-times from local (crustal) Pg to 

regional (upper mantle) Pn. The Pn arrival can be small and lost in noise, resulting in the 

analyst mistaking Pg for Pn. Identification of depth phases for shallow events is also 

difficult because of the short time-delay relative to the first arrival (P). Although P should 

always arrive first, followed by pP and sP, the source radiation pattern can sufficiently 

diminish the amplitude of the P arrival creating confusion. 

 



A number of useful phase identification methods have been developed that make use of 

3-component records of ground motion (e.g. Jurkevics, 1988; Cichowicz, 1993; Tong and 

Kennett, 1995; Anant and Dowla, 1997) or a spatial array of seismograms (Ringdahl and 

Husebye, 1982; Kvaerna and Ringdal, 1992; Der et al., 1993).  Ground particle motion 

can be indicative of wave type  (P, S, Rayleigh, etc.), but phase identification (Pg, Pn, P, 

PKP) based on particle motion requires uncommonly clear signal.  The velocity that a 

wave travels across an array of sensors (inverse phase slowness) can also be indicative of 

the phase name.  Although bringing seismograms to bear on the phase identification 

problem is the best practice, use of these methods is not common throughout the seismic 

community for a variety of reasons.  Readily available analysis software packages do not 

include sophisticated phase identification utilities and array stations are relatively few. As 

a result, the vast majority of phase labels found in bulletins are made at the discretion of 

the analyst.  

 

In this study we incorporate phase identification into the Bayesian hierarchical multiple-

event seismic location method (BAYHLoc, Myers et al., 2007). The BAYHLoc method 

formulates a joint posterior probability distribution over event hypocenters, travel-time 

corrections, and precision parameters for arrival-time measurements. Below we extend 

the joint probability of the multiple-event parameter space to include the phase name of 

each observation, and thus treat the phase label as a random variable. By incorporating 

assessment of phase label into a multiple-event locator we mitigate the confounding 

effects of event location error and travel-time prediction error. Further, instead of either 

accepting or rejecting a given phase label, the updated BAYHLoc method assigns phase 



labels probabilistically.  Therefore, phase-label uncertainty propagates to all other 

components of the multiple event parameter space. Further, the Bayesian methodology 

allows prior constraints on phase labels that may come from exceptionally clear signal or 

from waveform analysis.  

 

Method 

Notation 

We follow the notation of Myers et al. (2007). 

Event-origin parameters are: 

xi = (lati, loni, depthi) = the location of the i-th event. 

oi = the origin-time of the i-th event. 

The station data are: 

sj = (latj, lonj, elevationj) = the location of the j-th station. 

aijk = the k-th measured arrival-time from the i-th event at the j-th station. 

wijk = the phase-label assigned to the aijk arrival time, !"ijkw ={1,2,…, M}, 

where M is the number of phase names under consideration and each integer 

corresponds to a seismic phase {Pg, Pn, P, Lg, etc.}. 

The analyst-assigned phase-labels wijk are not necessarily correct. As such, we denote  

Wijk = the true phase-name (unknown) of the arrival aijk. 

Phase label error may take two basic forms: 1) a phase in the set Ω that is mislabeled 

(wijk≠Wijk, Wijk ∈ Ω) and 2) a phase outside the set Ω that is mislabeled (wijk≠Wijk, Wijk ∉ 

Ω). To account for phases not in the set Ω and erroneous arrival-time data, we introduce a 



null phase-label, Wijk = 0. While !"ijkw ={1,2,…, M}, we modify the true phase label 

such that 

! 

Wijk " #
*={0,1,2,…, M}.  

Given a proposed event-location x, let 

! 

wF (xi,s j )  = the model-predicted travel-time of phase w from event location x to 

station location s.  

We further abbreviate the notation by letting 

! 

ijwF = wF (xi,s j ) . The model-predicted 

travel-time is only an approximation to the true (unknown) travel-time of each phase. We 

therefore explicitly define, 

! 

wT (xi,s j ) = ijwT  = the true travel-time of phase w from event location xi to 

station location sj. 

We will refer to a subset of parameters by simply dropping one or more subscripts. For 

example, aij denotes the collection of the nij arrival-times observed at station j from event 

i.  

 

Hierarchical model 

The framework closely follows Myers et al. (2007) in which the multiple-event location 

problem is decomposed into 3 components. 

 

1) Travel-Time Model. The conditional distribution of the true travel-times (T) 

given travel-time predictions (F) and travel-time correction terms (τ); 

! 

p(T |F," )              (1) 



2) Arrival-Time Model. The conditional distribution of the arrival-time data (a) 

given the origin times (o), the travel-times (T), phase configurations (W), 

and arrival-time error terms (σ); 

! 

p(a |o,T ,W ," )                (2)  

3) Prior Model. A prior distribution for hypocenter parameters, arrival-time error 

terms, travel-time correction terms, and a prior distribution for phase 

configurations; 

! 

p(x,o), p(" ), p(#), p(W |w)              (3) 

 

Using Bayes’ theorem, these three physically related probability models are brought 

together in a joint posterior distribution 

 

! 

p(o,x,T,W ,",# | a) = p(a |o,T,W ," )p(T |F(x),# )p(W |w)p(x,o)p(")p(#) / p(a)        (4) 

 

where p(a) is the marginal distribution over the arrival-time data. Eqn 4 allows us to 

easily combine the 3 components of the hierarchical model to calculate the conditional 

probability for locations, travel-times, and phase-name configurations given a set of 

arrival-time data. The only difference between the above formulation and the formulation 

in Myers et al. (2007) is the prior model for phase labels.  In Myers et al. (2007) the true 

phase configuration W was assumed equal to the input phase configuration w with 

probability 1. That is, p(W = w | w) = 1.  

 



Myers et al. (2007) describe the travel-time correction (τ in Eqn 1) and arrival-time 

precision (σ in Eqn 2) models in detail. Summarizing, the travel-time model is specified 

as:  

ijWjiWWijWijWijW sxFT !"#$ +%+=%=           (5) 

where 

! 

"W  and 

! 

W
"  are broad-area, phase-specific shift and scaling parameters, ||xi-sj|| is 

the event-station distance, and 

! 

" ijW  is a path-specific correction term. The α term is a 

static shift in the travel-time curve of a given phase. The β term is a correction to the 

slope of the travel-time curve. 

 

The arrival-time measurement model is specified in terms of the travel-time residuals  

( )
jiWWijWijWijW sxFar !++!= "#           (6) 

which are assumed a priori to have zero mean and inverse variance (i.e., precision) equal 

to φijW .  The residual precision is decomposed into event (φi), station (φj), and phase (φW) 

components, with φijW = φiφjφW. 

 

Phase-label prior model 

As mentioned in the introduction, there is a diversity of methods by which a phase label 

may be determined. As such, there may be reason to give high probability (of being 

correct) to some input phase labels, whereas there may be only moderate probability that 

other phase labels are correct.  The phase-label prior model formalizes how prior 

information on the phase label is used in BAYHLoc.  

 



The phase label model starts with the full set (permutation) of possible phase labels for 

each event-station (Wij). The phase label permutation is formed by considering that the 

correct phase name may be any of the labels established by the set Ω*. Recalling that the 

set Ω* includes the null phase label, the permutation includes the possibility that any or 

all of the phase labels do not belong to the set of seismic phases under consideration. For 

example, if three phases are under consideration {Pn, Pg, Lg} and 2 phases are input for a 

given event/station {Pn, Pg}, then Wij has 13 possible configurations (Table 1), and we 

denote this phase configuration set by *

ij
! .  

 

We note that it is possible to create phase label combinations that are not physical, or 

highly improbable. For instance, if Pn and Lg are the phases under consideration, then 

any case in which the phase labeled Lg arrives before Pn is not physical and should not 

be considered. Likewise, although Pg can arrive before Pn, it is highly unlikely that the 

head wave can be detected in the Pg coda. We, therefore, establish the set of permutations 

that can physically occur ( *~
ij

! ), which is a subset of *

ij
! , and given by 

*~
ij

!  = {Wij : Wij ∈ *

ij
! , Wijk < Wijl for all k < l ≤ nij where Wijk and Wijl ≠ 0 }.  (7) 

Eqn 7 states that the elements of *~
ij

!  are comprised of combinations of Wij such that the 

arrival time order of the phase labels is established a priori with the order given by Ωij, 

with the phase labeled as 1 arriving before 2, 2 before 3, etc.  The null phase label is 

exempt from arrival time order constraint.  

 



The a priori probability of each element of Wij are determined by two user-provided 

parameters: 1) the probability that the phase label is correct (π), and 2) the probability 

that the true phase label could be null (η).  The prior probability that the true phase names 

are Wij given that the input phase labels are wij is given by 

( ) ( )
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In Eqn 8 Zij is a normalizing constant and M is the number of phases under consideration. 

We see from Eqn 8 that the probability of a given phase configuration Wij is computed by 

multiplying the marginal probabilities of the individual members of the set Wij and 

normalizing across all viable possibilities. Note that the probability is zero if the set Wij 

violates the a priori arrival-time order.  

 

The prior probability of each member of Wij depends on whether the label under 

consideration equals the input phase label (Wijk =wijk) and whether the label under 

consideration is null (Wijk =0).  If the label under consideration equals the called phase 

label, then the probability is set to the user-provided prior probability (πijk).  If the label 

under consideration is null, then the probability is the user-provided probability that the 

phase could be erroneous times one minus the a priori probability that the phase label is 

correct.  For example, if ηijk is 1 (not an advisable choice) then the only phase labels 



considered are the input label and the null label. Setting ηijk to 0.5, implies that if the 

input phase label is wrong, then the remaining probability is divided between the null 

phase and the set of all other remaining phase labels under consideration (minus the 

called phase label). Using Eqn 9 a value of ηijk can be selected such that the remaining 

probability that the input phase is not correct (1- πijk) is evenly distributed over all other 

phase labels, including null. It is also straightforward to select both πijk and ηijk such that 

the prior probability is evenly distributed across all phase labels, ignoring the provided 

phase label; below we refer to this case as a flat prior. Table 1 includes the probabilities 

of each phase combinations for an example where three phases are considered {Pn, Pg, 

Lg} and 2 phases are included for a given event/station {Pn, Pg}. In the example πijk = 

0.9 and ηijk = 0.5; Pn must arrive before Pg; and Pg must arrive before Lg. As expected, 

the highest probability phase combination is the one in which the input phase labels are 

correct, followed by the cases where one of the phase labels is erroneous, followed by the 

cases where both phases are erroneous, followed by all other possibilities in *~
ij

! . Note 

that the joint probability that both phases are correct is greater than the product of the two 

marginal probabilities.  This result occurs because the marginal probability of one phase 

label does not take into consideration the phase-order constraint of Eqn 7.  After 

normalizing by the phase-order constraint the probability of a valid phase set is higher 

than expected. 

 

Posteriori phase-label probability 



We use the Markov-Chain Monte Carlo (MCMC) method to draw samples from the 

posteriori distribution.  The samples are used to infer the joint probability across the 

multiple-event parameter space, including phase name probabilities. 

 

Myers et al. (2007) present the BAYHLoc implementation of MCMC in detail, and we 

provide a brief summary here. The MCMC sampler generates a chain of parameter states 

(configurations) using stochastic transition kernels (samplers), where the next state of the 

chain is generated conditional on the current state. The behavior of the transition kernels 

is guided by the arrival data model, the travel-time model, and the priors (and in some 

cases by an additional next-state proposal distribution). In practice, parameter updates are 

conducted on one component of the hierarchical model at a time, while all other 

parameters are held fixed. In the BAYHLoc implementation, such component-based 

updates are carried out either by Metropolis random walks, Gibbs samplers, or slice 

samplers; see Myers et al. (2007) for details. Stepping through updates of each set of 

parameters completes one update of the entire parameter space. Gelman et al. (2004, 

section 11.5, pp 292) confirm that the progressive sampling is equivalent to simultaneous 

sampling from the joint probability function (Eqn 4). Typically, multiple Markov chains 

are generated (often in parallel), each consisting of thousands of posteriori samples, to 

infer the joint posteriori population.   

 

Details of the stochastic transition kernels used to generate locations, travel-time 

corrections, and measurement precision parameters are provided in Myers et al. (2007). 

Here we focus on the sampler used to generate phase configurations.  



 

A Gibbs sampler is used to generate a new phase configuration for each event-station 

pair. When all the parameters of the BAYHLoc model are held fixed except Wij, the only 

part of the posterior probability distribution (Eqn 4) that changes with Wij is given by 

( ) )|(,,| ijijijijij wWpWAap !         (10)  

where aij is the observed arrival time vector, Aij is the predicted arrival time vector of all 

phases under consideration, and σ represents the arrival-time measurement model (Eqn 

5). The first term represents the probability that the arrival-time data could occur given 

the predicted arrival times and the assumed phase labels and measurement error (and 

implicitly the hypocenter and travel-time model). The second term consists of the priors 

on the phase configuration, computed from Eqn 7.  A Gibbs update of Wij is 

accomplished by computing Eqn 10 for all possible configurations of Wij (under 

consideration) and randomly selecting one configuration, with probability proportional to 

Eqn 10.  Hence, Wij configurations that do not fit the observed arrival-times and/or have 

low prior probability have a lower chance of being selected.    

 

As outlined in Myers et al. (2007), the arrival-data distribution p(aij | Aij, Wij, σ) of Eqn 10 

is given by the product of nij Gaussian distributions, where the k-th Gaussian arrival 

distribution has mean given by AijW and inverse variance φijW; W = Wijk and Wijk is a valid 

phase (i.e., not null). What remains to be specified is the arrival distribution in the case 

where Wijk = 0.  Developing an error model for the outlier phase label is less 

straightforward.  

 



Previous studies (e.g. Jeffreys, 1932; Buland, 1986) demonstrate that empirical travel-

time residual distributions can be fit by a mixture of two Gaussian distributions; one 

Gaussian is used to fit the bulk of the residuals and the other Gaussian fits the “heavy 

tails” of the distribution (i.e. outliers).  In the approach presented here we suggest that the 

heavy tails of the residual distribution are not members of the Gaussian arrival-time 

measurement error distribution but are instead phase-label errors (i.e. 

! 

wijk " ijkW ). With 

this framework in mind we take the outlier arrival distribution to be Gaussian with mean 

given by AijW, where W = wijk (the input label), and standard deviation d0.  It is reasonable 

to believe that the arrival-time distribution for the null-phase label is centered on the 

predicted time of the reported phase.  We believe this to be reasonable because most 

reported phase labels are based on an iterative approach of picking phases and locating 

the event, making mistaken phase labels consistent with the proposed location. In the 

tests that follow we set d0 to 600 seconds, but this number can be adjusted.  In the case 

where the measurement error of a valid phase is 0.5 seconds, the null phase will be 

sampled with probability equal to the valid phase when the arrival-time residual is 1.885 

seconds, or at 3.77 standard deviations from the mean.  If measurement error doubles to 

1.0 seconds then the valid and null phase are chosen with equal probability at 3.58 

standard deviations from the mean, a small change. We find that within typical 

measurement errors, a static value for d0 does not strongly affect the point in the valid-

phase distribution at which a phase label is equally likely to be accepted as a valid or null 

phase.  Therefore, we find that an adaptive approach for determining d0 is not warranted. 

 

Application 



The examples below demonstrate 3 critical aspects of the BAYHLoc phase identification 

method.  First, in the vast majority of instances phase names are identified with high 

probability.  Second, the probability of all phase names is provided, which is useful in the 

few cases where a single phase name is not identified with overwhelming probability.  

Third, because BAYHLoc is a joint posteriori probability across all multiple-event 

parameters, the phase label uncertainty is propagated to the marginal probability of all 

other parameters including hypocenters. 

 

Test data set 

We test BAYHLoc phase identification with the Walter et al. (2004) data set of Nevada 

Test Site (NTS) explosions (Fig. 1). This data set is ideal for testing because the 74 event 

locations are known and the arrival data have been meticulously measured by an 

experienced analyst (Ryall, 2005). As part of the data set compilation, Walter et al. 

(2004) isolated timing errors by re-examining waveform data acquisition logs and 

evaluating the temporal evolution of travel-time residuals at each station. In cases where 

waveforms were not available, picks from the National Earthquake Information Center 

(NEIC) augment the arrival-time data set. Only NEIC phase arrivals within 3 standard 

deviations from the empirical curves are accepted. 

Data set corruption  

Table 2 summarizes the results for 29 test cases.  Case categories are: 

1) B = Walter et al. (2004) phase labels. These are the phase labels determined 

through careful analysis. 



2) O =  outlier. A percentage of the arrival data set was randomly selected and an 

arrival-time error was added.  The arrival-time error was randomly drawn 

from a flat distribution with bounds of ±600 seconds.  This case is meant to 

test the response to erroneous arrivals. 

3) S =  switched phase labels. A percentage of the arrival data set was randomly 

selected.  The selected phase label was then switched with one of the other 

phase labels for that event and station. This case is meant to test the 

response to typographical errors and/or analyst mistakes. 

4) M = mislabeled. This case is similar to “S”, but instead of switching two phase 

labels one of the phases is removed from the data set.  This case is more 

difficult to detect than “S”, because removal of the second datum reduces 

the amount of information in the data set as a whole.   

 

Prior assumptions 

We tested the influence of prior information on the posteriori distribution by assuming 

one of three scenarios. In Table 2 the prior constraints are included in the case name 

following the colon:  

1) AK = assumed known.  The input phase labels are given a probability of 1.0.  

2) IP   = informative prior.  The probability of a correct input phase label is set to 

0.8 (πijk =0.8 in Eqn 9), and the probability that an incorrect phase is the 

erroneous is 0.5 (ηijk =0.5 in Eqn 9).  We find that these setting are 

appropriate for most data sets, giving consideration to the analyst 



assessment while testing other possible phase labels against the expected 

arrival-time.  

3) FP  = flat prior. Both πijk and ηijk are chosen such that all possible phase labels for 

each event/station are given equal probability.  In other words, the input 

phase labels are ignored. 

 

 

In the tests below we explicitly place prior constraints on the arrival order (see Eqn 7), 
with Pn assumed to arrive first, followed by Pg, and then Lg; see the example given in 
Table 2. In addition, locations and origin times for 3 of the events are constrained 
(assumed known), which effectively constrains the travel-time predictions for all events 
(Myers et al., 2007).  Otherwise, the remaining prior parameters were specified to yield 
vague prior information. 
 

Results, posteriori phase name probability  

We compare the posteriori assessment of phase labels and locations with the Walter et al. 

(2004) data set. The locations of these explosion events are unimpeachable. While the 

arrival-time data set is very high quality, there is some degree of uncertainty. As such, 

there is a small degree of error in the assessment of phase labels. However, we believe 

the use of real data is preferable to a synthetic data set, because a real data set includes all 

error processes, including processes that we continue to learn about. For succinctness, we 

refer to the Walter et al. (2004) data set as the baseline. 

 

Results are summarized in Table 2 and Figure 2. The number following the test case in 

Table 2 indicates the percentage data corrupted (e.g. O50= 50% of the arrival-times are 

corrupted).  The 2nd column of Table 2 lists the percentage of highest posteriori 



probability phase labels that agree with the baseline data set (also see Figure 2, right 

side).  When the baseline date are input (Case “B”), 99.6% and 98.2% of the posteriori 

phase labels agree with the input depending upon whether informative or flat priors are 

used, respectively. In all cases (including flat prior case) where phase labels are switched 

(“S” cases) or mislabled (“M”), greater than 97.8% of posteriori phase labels agree with 

the baseline data.  In cases where 10% of the arrival-times are corrupted (“O10” case), 

greater than 99% (informative prior) and 97% (flat prior) of phase labels agree with the 

baseline. Agreement with the baseline data is diminished as the percentage of corrupted 

arrival times increases; for the O50:IP,FP cases 84.6% and 83.7% of phase labels agree 

with the baseline, respectively.  

 

Figure 2 shows the input phase labels and the most likely posteriori phase labels as a 

function of event-station distance for cases in which 30% of the data are corrupted. The 

known event hypocenters are used in Figure 2 plotting (as opposed to the BAYHLoc 

relocations) to isolate phase label and arrival-time-measurement errors.   Plotting the 

results in the context of travel-time shows that the phase labels make physical sense; the 

empirical travel-time curves defined by data (posteriori phase labels) are consistent with 

curves established using known locations.   We note, however, that even in the 

uncorrupted case a few of the measurements are most likely outliers. In the cases where 

phase labels are switched, the most likely result is indiscernible from the uncorrupted 

case.  In other words, if the arrival-time information is preserved and only the phase label 

information is corrupted, then the phase labels are robustly determined, regardless of 

prior information.   



 

The 3rd column of Table 2 lists the percentage of phase labels with posteriori probability 

greater than 0.9 (high probability) that agree with the baseline data set.  In cases where 

phase labels are switched or mislabeled, a large majority of the posteriori phase labels are 

determined with high probability, and greater than 97% of arrivals agree with the 

benchmark.  Only by corrupting arrival-time does agreement between the posteriori and 

benchmark phase labels drop to the expected agreement with the benchmark (90%). 

Results begin to match the expectation when a large percentage of the arrival-times are 

corrupted because arrival-time corruption is drawn from a flat ±600 second distribution 

and many realizations are needed to sample the edges of the pick-error distribution where 

ambiguity occurs.  

 

The 4th column of Table 2 lists mean epicenter error between all realizations and the 

known location. Epicenter error is also plotted as a function of percentage data set 

corruption in Figure 3. The uncorrupted case (B) establishes an average error of 

approximately 1.7 km. Location error is, for the most part, unchanged when a flat prior is 

used. The cases where phase labels are switched (S) also result in approximately 1.7 km 

error, regardless of the percentage of data corruption. In the mislabeled cases (M), in 

which some data are removed, location error increases slightly to approximately 2 km as 

the level of corruption reaches 50% of the data set. The increase in location error is due to 

fewer arrival-time data.  The largest difference in location performance is seen in cases 

where the travel-times are corrupted.  When only 10% of the data are corrupted, location 

accuracy is consistent with the uncorrupted case (~1.8km). Location error ramps up to 7.5 



km and 17 km when 50% of the data set is corrupted, depending upon whether the prior 

is informative or flat, respectively. We also include O10:AK and O30:AK, in which 

arrival time outliers are introduced and phase labels are assumed known with probability 

1.0. If arrival-times are corrupted and no attempt is made to catch outliers, then location 

results degrade drastically. 

 

Ambiguous phase labels effect on location probability regions 

In the vast majority of test cases (Table 2) one phase configuration (Wij) is identified as 

having far higher probability than any other configuration.  However, there are instances 

in which more than one phase configuration has appreciable probability. While other 

algorithms would necessitate choosing one phase label configuration, the BAYHLoc joint 

probability function propagates phase-label uncertainty to all other aspects of the 

multiple-event problem. 

 

We find that phase-label ambiguity is most clearly manifested as an expanded, sometimes 

multimodal, epicenter probability region.  In Figure 4a we show an example event 

location where the Walter et al. (2004) phase labels are used with an informative prior. 

Posteriori phase labels are unambiguous for 8 of the 9 stations observing this event. The 

possibility of several phase label combinations at station MNV are listed in Figure 4a. 

For this event, phase-label uncertainty results in an expansion of the epicenter probability 

region (Figure 4a) to the northwest and a slightly non-symmetric (non-Gaussian) 

probability region. In Figure 4b, we see that the northeast expansion of the epicenter 

probability region is the result of sample locations for which the MNV phase 



configuration is unchanged from the input.  Location samples in which the Pn datum is 

erroneous (ignored) and the Pg label is switched to Pn comprise the highest epicenter 

probability density region.  

 

Data set corruption diminishes phase label resolution and inflates location confidence 

regions. In Figure 4c we show an event location (same event as Figure 4a) in which 30% 

of the phase-labels are corrupted and 30% of the data are removed (see description of 

case M30:IP above). By chance, data at 3 of the 9 stations observing the Figure 4 event 

were corrupted (stations DAC, LAC, and THP).  Posteriori phase label probabilities are 

unambiguous (and in agreement with Walter et al., 2004) at all stations except MNV and 

LAC.  The phase label ambiguity results in a bimodal epicenter probability region (Figure 

4c). Figure 4d shows locations determined with each of the 3 most probable phase 

configurations.  The most likely phase configuration (all prior labels are correct) results 

in one mode of the epicenter probability region.  Locations with the next two most likely 

phase configurations comprise the second mode of the epicenter probability region, 

which is the mode centered on the known location (Figure 4, lower panel). 

 

Discussion  

Our tests suggest that phase-labels can be robustly determined in a multiple-event 

location algorithm.  In most of our test cases (Table 2; Figures 2 and 3), posteriori phase 

label probabilities change little when informative or flat priors are used. We may infer 

from this result that when placed in the multiple-event context, the analyst provided 



phase labels carry little information, as the label is robustly inferred from the arrival-time 

data.  

 

It is important to acknowledge the cases where prior phase label information does 

improve posteriori probability of phase label and other multiple-event parameters. In the 

cases where a large percentage of the arrival-time data are corrupted, prior constraint on 

the phase labels can help to tighten the posteriori distribution of all parameters.  The 

cases in point are O50:IP and O50:FP, in which 50% of the arrival-times are corrupted.  

In the former case an informative prior is used and 81% of the posteriori phase labels are 

determined with probability > 0.9.  However, when a flat prior is used, 61% of the 

posteriori phase labels are determined with probability > 0.9.  The effect of prior phase 

labels in these cases is also observed in the epicenter error, where average error reduces 

from 17.5 km to 7.5 km when prior information is used.  Corrupting 50% of the arrival-

time data is an extreme test. When 10% of the arrival-times are corrupted 99% and 94% 

of the posteriori labels are determined with probability > 0.9 for informative and flat 

priors, respectively. These findings suggest that for a variable-quality data set, which is 

generally the case, prior information on the highest quality data can help tighten the 

posteriori distribution.  

 

The special case where travel-times (as a function of distance) for two phases cross also 

deserves comment. If measurements for both phases are input, then phase ordering 

constraint (Eqn 7) eliminates ambiguity immediately before and after the cross over.  

Although ambiguity does occur at the point of the cross over, the ambiguity does not 



present a practical difficulty because both arrivals are accurately predicted, and the effect 

on the other parameters of the multiple-event problem is small.  Nonetheless, if only one 

of the phases comprising a cross-over is input, then a phase-label prior may provide an 

important constraint. 

 

Conclusions 

We incorporate probabilistic assessment of seismic phase labels (e.g. Pn, Pg, Sn, Lg) into 

the BAYHLoc multiple-event location routine of Myers et al. (2007). The BAYHLoc 

method simultaneously models all aspects of the multiple-event system, resulting in an 

assessment of the joint posteriori probability density function.  Using a Bayesian 

formulation, prior constraints on any of the model parameters may be imposed.   

 

The phase label model consists of all permutations of phases under consideration for each 

station/phase. The posteriori set of modeled phases includes a null phase label that 

captures data determined not to be members of the phase set under consideration.  We 

model the null phase with a broad Gaussian distribution centered on the predicted arrival 

time of the input phase. Previous efforts (Jefferies, 1932; Buland, 1986) model arrival-

time residuals as the mixture of two Gaussians.  The first Gaussian is narrow and the 

other is broad. We interpret the narrow Gaussian distribution as the measurement error 

and the broad Gaussian as an error in phase label (the null phase).  

 

Testing the updated BAYHLoc method with a high-quality data set, we find that phase 

labels are unambiguously determined even if input phase labels are discarded. Corruption 



of a small percentage of arrival-times does not significantly affect the result, but phase 

label priors do improve the result when a large percentage of the arrival-times are 

corrupted. 

 

The results suggest that, when placed in a multiple-event context, arrival times carry far 

more information than phase labels. In other words, given accurate arrival-times we can 

determine the phase labels unambiguously.  Phase labels provide additional information 

only when the arrival-times are imprecise. Heretofore, location methods force the input of 

one phase label per arrival, leaving only the option to accept or reject each datum 

(arrival-time/phase-label).  By simultaneously modeling phase labels, we can salvage the 

portion of the measurement (the arrival-time) that carries the information needed to 

constrain event locations and travel-times. 
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Tables 

 

Table 1: Example permutation of possible phase labels for a case where {0,Pn,Pg, 

Lg} are the phases under consideration (0 is a null phase for erroneous data) and 

two phases {Pn, Pg} are assigned by the analyst/system.  The joint probability of 

each phase combination as computed using Eqn 8 is also shown (see text for details). 

Permutation of possible phase labels Phase Label 
1 2 3 4 5 6 7 8 9 10 11 12 13 



Pn 0 0 0 0 Pn Pn Pn Pg Pg Pg Lg Lg Lg 
Pg 0 Pn Pg Lg 0 Pg Lg 0 Pn Lg 0 Pn Pg 
%probability 0.3 0.1 4.8 0.1 4.8 87.0 2.4 0.1 0.0 0.1 0.1 0.0 0.0 
 

 

 

 

 

Table 2. Summary of epicenter and posteriori phase label accuracy. Each row is an 

average of 10 realizations of the specified type of data corruption (cases). See text 

for case definitions. Average epicenter error is the mean error of all realizations. 

Phase label accuracy (relative to the Walter et al. data set) is provided for the most 

likely posteriori label, and for cases in which the posteriori probability is greater 

than 0.9. The number in parenthesis is the number of arrivals in the data set 

meeting the criteria.  In the “most probable” case, numbers less than 1589 reflect 

removal of data in the corruption procedure. 

 

Case % correct phase label, 
most probable 

% correct phase label, 
probability >0.9 

Average Epicenter Error 
(km) 

B:AK 100.0 (1589) 100.0 (1589) 1.7 
B:IP 99.6 (1589) 99.8 (1575) 1.7 
B:FP 98.2 (1589) 99.5 (1498) 1.8 
O10:IP 99.2 (1589) 99.4 (1570) 1.8 
O20:IP 98.6 (1589) 99.0 (1568) 2.1 
O30:IP 96.9 (1589) 98.2 (1534) 2.8 
O40:IP 94.0 (1589) 96.5 (1498) 3.5 
O50:IP 84.6 (1589) 91.6 (1293) 7.5 
S10:IP 99.6 (1589) 99.8 (1570) 1.7 
S20:IP 99.6 (1589) 99.7 (1561) 1.7 
S30:IP 99.4 (1589) 99.7 (1544) 1.7 
S40:IP 99.2 (1589) 99.7 (1535) 1.7 
S50:IP 98.9 (1589) 99.7 (1517) 1.7 



M10:IP 99.5 (1543) 99.8 (1517) 1.7 
M20:IP 99.1 (1493) 99.7 (1458) 1.7 
M30:IP 99.0 (1442) 99.4 (1407) 1.8 
M40:IP 98.4 (1394) 99.3 (1348) 1.9 
M50:IP 98.1 (1345) 99.0 (1294) 2.1 
O10:FP 97.1 (1589) 98.7 (1493) 2.0 
O30:FP 94.7 (1589) 97.9 (1388) 2.8 
O50:FP 83.7 (1589) 94.3 (0981) 17.1 
S10:FP 98.2 (1589) 99.3 (1497) 1.8 
S30:FP 98.3 (1589) 99.5 (1497) 1.8 
S50:FP 98.3 (1589) 99.3 (1501) 1.8 
M10:FP 98.3 (1543) 99.5 (1456) 1.8 
M30:FP 98.1 (1442) 99.6 (1344) 1.9 
M50:FP 97.8 (1345) 99.4 (1250) 1.9 
O10:AK 90.0 (1589) 90.0 (1589) 45.1 
O30:AK 70.0 (1589) 70.0 (1589) 201.0 
 



 

Figure Captions 

Figure 1. Ground truth dataset of Walter et al. (2004). a) Known locations of 74 nuclear 

explosions at the Nevada Test Site. b) Regional stations used in location tests.  

 

Figure 2.  Input and posteriori travel-times and phase labels (left and right columns, 

respectively) are plotted as a function of event/station distance.  All plots are reduced to 

Pn travel-time and the known event locations are used to compute distance.  The “Case” 

designation in the left column indicates the test case (see text). Symbols are used to 

designate the phase label. Color in the left column calls attention to corrupted data. Color 

in the right column calls attention to disagreement between the input an most probable 

posteriori phase label, except when the posteriori label is “0” (i.e. erroneous) where grey 

is used. 

 

Figure 3. Epicenter error vs. percentage data corruption. Epicenter error is plotted on a 

logarithmic axis. Various types of data corruption are indicated by differing symbols. A 

“+” through the symbol indicates that a flat prior was used (i.e. input phase labels were 

ignored). Otherwise, an informative prior was used.  See text for details on test cases and 

informative prior.   

 

Figure 4. The effect of phase-label uncertainty on epicenter probability regions. The 

known location is at the origin, and the “+” is plotted at the maximum probability density 

(mode, a.k.a. epicenter estimate). a) Probability region for one of the few events with 



ambiguous posteriori phase labels (case B:IP). Red indicates high probability density 

grading through yellow to white where probability density is low. Contours show areas 

encompassing 50% and 95% of the probability. b) Epicenter samples coded by phase 

configurations at station MNV. Distinct phase configurations can comprise distinct 

portions of the probability region. c) Same as a) except corrupted data are used (case 

M30:IP). The probability region becomes distinctly multimodal. d) same as b) except for 

case M30:IP. The bimodal probability region is the result of distinct phase configurations 

at stations MNV and LAC. 

 

 



 
Figures 
 
 

 
 







 
 


